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Dynamical Diffuse Scattering from Impure and Deformed MgO Crystals 

BY ROGER CHANG 
North American AvhTtion Science Center, Thousand Oaks, California, U.S.A. 

(Received 2 December 1966) 

The transmission electron diffraction patterns of several impure and cold worked MgO crystals are 
presented showing in particular the Kikuchi lines and Kikuchi bands. The fine structures and the 
broad and curved Kikuchi lines associated with slight cold-working can be qualitatively understood 
as the result of multi-beam diffraction effects. The existence of deficient and asymmetrical Kikuchi 
lines within an excess band is anomalous and may possibly be interpreted as due to Bragg scattering 
of the relatively intense diffuse beams according to Gjonnes and Watanabe. 

Introduction 

The dynamical diffuse scattering from nearly perfect 
MgO crystals obtained by burning magnesium metal 
was recently discussed by Watanabe and Gjonnes 
(Watanabe & Gjonnes, 1965; Gjonnes & Watanabe, 
1966), who reported Kikuchi lines accompanied by a 
fine structure (particularly for the strong reflections) 
and very strange diffuse scattering patterns (instead of 
the Kikuchi lines) when three or more Bragg reflections 
were excited. The present paper reports the dynamical 
diffuse scattering of impure and slightly cold worked 
MgO crystals. 

Experimental 

MgO crystals (Norton) containing 93 and 300 ppm of 
iron were used. Cleaved plates about 5 x 5 x 1 mm in 
dimensions were heated in air to 1400°C for two hours 
then either slowly cooled in the furnace or rapidly 
cooled in air. Some of the specimens were plastically 
deformed by compression (along two opposite rectan- 
gular faces) to a total strain of about two per cent. 
The plates were then hand polished to appropriate 
thicknesses for acid thinning, which was done with a 
moving jet of hot phosphoric acid until puncture. Thin 
sections near the puncture were collected, washed and 
transferred to an electron microscope (AEI model 
EM-6) for transmission studies. The thicknesses of 
these specimens varied from 3000 to 5000 A with faces 
nearly parallel to the cube plane. 100 kV electron beam 
with a resolution of a few volts was used. The speci- 
mens can be tilted to a maximum of 6-7 ° in the micro- 
scope but the actual tilt used in these studies was never 
more than 2 ° . 

Fig. 1 shows the Kikuchi lines and bands of a MgO 
crystal (300 ppm Fe, slowly cooled from 1400°C) ex- 
cited for the 040 Bragg reflection. All the Kikuchi lines 
(deficient and excess) and bands parallel to both the 
[100] and [010] directions can be indexed. Attention is 
directed to the anomalous deficient line nearly in the 
middle of the 200 Kikuchi band (marked by arrow- 
head). This point will be discussed further in the latter 
part of the paper. 

Fig. 2 shows the Kikuchi lines and bands of a second 
MgO crystal (300 ppm Fe, slowly cooled from 1400 °C) 
excited for the 020 Bragg reflection. Attention is again 
directed to the intensity anomaly inside the 200 Kikuchi 
band (marked by arrowhead). All the Kikuchi lines 
and bands can be readily indexed. 

Fig. 3 shows the diffraction pattern of a third MgO 
specimen (93 ppm Fe, slowly cooled from 1400°C). 
The fine structure associated with the 400 and 600 
Kikuchi lines (marked by arrowheads) is evident. 

Fig.4 shows the Kikuchi lines from a fourth MgO 
specimen (93 ppm Fe, air cooled from 1400°C, de- 
formed by compression to a total strain of 270). Here 
the Kikuchi lines are not only broad but show slight 
curvature. 

Discussion 

Both the Kikuchi lines and bands are observed in im- 
pure and cold worked MgO. The anomalous deficient 
line within the excess 200 Kikuchi band shown in both 
Figs. 1 and 2 is worth particular attention. One might 
say that it is a special feature of the fine structure as- 
sociated with the Kikuchi bands. The theoretical treat- 
ment of Kainuma (1955) suggests that when the thick- 
ness of the specimen under investigation becomes thin, 
an oscillating modulating term (last term in the square 
bracket of equation (104) of Kainuma's paper) will 
come into play. However, this oscillating term can 
predict only broad sinusoidal changes in intensity 
within the band but will not predict the existence of 
any sharp deficient line. It may possibly be interpreted 
in terms of fragmentary displacement of the (400) de- 
ficient Kikuchi line by a 200 reciprocal lattice vector 
due to Bragg scattering of the relatively intense diffuse 
beams suggested by Gjonnes & Watanabe (1966). It 
is noteworthy, however, that the deficient line shown 
in Figs. 1 and 2 is located slightly off center of the band, 
suggesting possibly the presence of another excess line 
symmetrically positioned with respect to the deficient 
line. 

The fine structure shown in Fig. 3 can be interpreted 
qualitatively as the result of multi-beam diffraction 
effects discussed recently in some detail by Gjonnes & 
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Fig. l.  Electron diffraction pattern of  MgO crystal no. 1 
(300 ppm Fe, slowly cooled from 1400°C). 
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Fig. 2. Electron diffraction pattern of  MgO crystal no. 2 (same 
as crystal no. 1). 
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Fig. 3. Electron diffraction pattern of  MgO crystal no. 3 
(93 ppm Fe, slowly cooled from 1400°C). 
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Fig.4. Electron diffraction pattern of MgO crystal no .4  
(93 ppm Fe, air-cooled from 1400°C and cold-worked by 
compression 2 %). 
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Watanabe (1966). The curvature of the broad Kikuchi 
lines shown in Fig. 4 can therefore be interpreted as the 
overlap of the broadened fine structures seen in Fig. 3. 
The interpretation is qualitative, however, and any 
quantitative analyses of the diffraction patterns must 
await further theoretical understanding of the dynamic 
diffuse scattering of electrons. 

The author wishes to thank W.G.Brammer and 
R.E.DeWames, North American Aviation Science 
Center, for the electron diffraction photographs and 

theoretical discussion and F. E. Ekstrom, also of North 
American Aviation Science Center, for preparation and 
thinning of the MgO specimens. 
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T h e  D a r w i n  D y n a m i c a l  T h e o r y  o f  X - r a y  D i t f r a e t i o n *  
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A simple alternative to the Ewald-von Laue dynamical theory of X-ray diffraction is described. Several 
of the more important features of dynamical diffraction, including anomalous transmission, diffraction 
in asymmetric Laue geometry, and the properties of the dispersion surface, are derived. The method 
involves the solution of a system of difference equations similar to those first solved by Darwin. The 
formalism of electromagnetic theory is avoided, and the result is achieved with no loss in rigor. In 
addition to its greater simplicity, the theory seems to be easier to modify to account for small devia- 
tions from perfect periodicity, which are difficult to account for in terms of the Ewald-von Laue treat- 
ment. 

Introduction 

The central problem of X-ray crystallography has tra- 
ditionally been, given a specific array of centers of 
scattering factor f ,  to combine the amplitudes and 
phases of the resultant scattered waves in order to 
recover the diffraction pattern associated with the 
array. Neither quantum mechanics nor electromagnet- 
ic theory is normally invoked. The crystallographer 
simply takes f to be the ratio of the wave scattered 
by an atom to that scattered by a classical electron, 
and leaves its computation to the theoretical physicist. 
All of the electromagnetic and quantum theory of the 
problem is contained in the calculation off.  

The Ewald (1916)-von Laue (1931) dynamical dif- 
fraction theory is a departure from this custom. Here, 
in order to obtain the total wave field inside a perfect 
crystal, one solves Maxwell's equations in a medium 
with a periodic, time dependent, complex dielectric 
constant. The treatment is elegant but rather involved. 

We here show that that is not necessary, that all 
of the features of dynamical diffraction including the 
anomalous aspects of the Borrmann effect are recover- 
able with the usual tools of X-ray crystallography. No 
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electromagnetic theory is used. The result is achieved 
by simply solving in Laue geometry the difference equa- 
tions first solved by Darwin (1914) in Bragg geometry. 

It has previously been shown (Borie, 1966) that at 
the precise Bragg angle for the symmetrical Laue case, 
such a procedure leads to the vanishing of the linear 
absorption coefficient and the anomalous behavior of 
the refractive index associated with the Borrmann ef- 
fect. In this paper we compute the wave field for an 
arbitrary direction of incidence. Diffraction in asym- 
metric Laue geometry is discussed. We examine the 
behavior of the wave field in the immediate vicinity 
of the Bragg reflection for the symmetrical Laue case, 
and we derive the properties of the dispersion surfaces. 
The result is identical with that of the Ewald-von Laue 
theory. 

Fresnel diffraction in transmission 

A preliminary to writing the Darwin difference equa- 
tions is to calculate the wave scattered by a single 
plane of scattering material. A family of such planes 
is then assembled to form a crystal, and the combina- 
tion of the amplitudes and phases of the scattered waves 
is expressed by the difference equations. 

This is conventionally done in reflection, or Bragg 
geometry (James, 1950), as illustrated in Fig. 1. The 
xy plane is populated by a uniform distribution of 


